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Facial NVC Recognition

CCNY NVC Dataset Results on Aff-Wild2 [4]

Method 
F1 

Score
Accuracy

ABAW2 

Metric

Baseline [4] 30 50 36.6

CPIC-FIR2021 [5] 40.2 63 47.7

Netease Fuxi Virtual Human [6] 75.7 85.6 79

Ours 64.3 68.2 65.6

• Our model achieves comparable results with previous 

SOTA methods on the validation set of the Aff-Wild2 

dataset without using any extra data.

• Our method is, to the best of our knowledge, the first to 

use temporal context for emotion recognition.

• We measure our model’s performance using the official 

evaluation criteria presented in the Aff-Wild2 competition: 

Conclusions & Future Work
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• 2.2 billion people worldwide have some form of vision 

impairment [1].

• Body language makes up approximately 55% of the 

information communicated during conversations [2].

• The blind and low vision (BLV) community understand 

other people’s intentions, feelings, and beliefs differently 

than sighted people as they cannot perceive nonverbal 

cues (NVCs) [3]. 

• To contribute to the development of better NVC 

recognition aids, we are building the CCNY NVC Dataset 

and creating a multimodal action recognition model for 

NVC recognition in videos.

Existing Datasets

• Limited to seven 
basic emotions. 

• No multimodal 
annotations.

• Lack of 
spontaneous/ real-
world scenarios. 

Existing NVC Aids 

• Not scalable.

• Distracting in 
conversations.

• Based mainly on 
facial expression 
recognition (FER).

CCNY NVC Dataset

Introduced an in progress 

multi-modal dataset with 

both high-level emotion 

and fine-grained action 

annotations.

Achieved comparable results 

to previous SOTA methods 

on the Aff-Wild2 Dataset [4] 

with the proposed 3D-

ResNet [7] for FER.
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Baseline Model for NVC Recognition

• Achieving comparable results on Aff-Wild2 showcases the 

validity of our model. 

• We aim to extend our facial NVC recognition network into 

a multimodal network for emotion recognition based on 

nonverbal cues.

• Our end goal is to create a real time NVC recognition aid 

for the BLV community. 

• We are continuously working on the CCNY Dataset to 

ensure unbiased and balanced representation.  
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Additional Information

• Captured using a Samsung Galaxy  

S7 FE 12.4”. 

• Videos of casual conversations in 

first person point of view. 

• Large intra-class variance as shown 

on the right.  

• Trained using weighted sampling of classes, weight decay, 

and focal loss with the Adam optimizer.


