
 

 

 

Abstract 
 

Pseudocoloring is widely used to not only enhance the 

visual appeal of images but also to highlight important 

details. As such, it plays an important part in data 

visualization in many fields. In this paper, we propose a 

method for pseudocoloring images based on the generation 

of a color map from a true color image with similar objects 

present as the grayscale image we would like to color. We 

first use k-means clustering to segment regions of the true 

color image based on their color and then create a color 

map for each region. Then, each map is applied to the 

corresponding region of the gray scale image using edge 

detection. For more accurate segmentation, we introduce a 

feature vector containing texture, spatial, and intensity 

information. Our method was successful in transferring 

colors from a specified true color image to a grayscale 

image.  We also discuss an attempt at a region growing 

algorithm for segmentation.  

Introduction 

 

A technique for mapping gray level intensities to red, 

green, and blue values either through a table or function, 

pseudocoloring is an important aspect of data visualization 

in many fields [1]. For instance, grayscale images taken by 

the Hubble Space telescope are pseudocolored to represent 

distributions of different gases and compounds [2]. Current 

methods for pseudocoloring involve applying color maps 

[3], which are arrays of colors indexed to correspond to 

specific intensity levels, or color matching between two 

images [4]. Pseudocoloring techniques in the frequency 

domain have also been discussed [5, 6].  

Although various methods exist for image coloration 

based on existing images [7], they involve complex 

matching algorithms. In this paper, we propose a method 

for image coloration based on an existing, similar image 

that relies on segmentation. Our algorithm does not color 

match, but relies on manual user input to segment a true 

color image to create color maps and then apply them to a 

grayscale image. We create color maps from true color 

images by selecting values indicative of the range of colors 

in each red, green, and blue (RGB) channel of the true color 

image and then interpolate to create a color map based on  

 

 

 

 

the image. We then employ k-means clustering to segment 

our image and create color maps for each cluster.  

1. Initial Qualitative Analysis of Pre/post 

processing techniques on Pseudocolored 

Images 

 Pseudocoloring techniques map gray level intensities to 

specific values of red, green, and blue to create color 

images. In this section, we explore histogram equalization 

and various methods for creating grayscale images and 

their impact on pseudocolored images.  

1.1 Qualitative Comparison of True Color to 

Grayscale Conversion Methods 

 We compared four grayscale conversion methods: 

desaturation, decomposition, intensity in an HSI color 

space, and luminance. 

Desaturation [10]: Desaturation works in the hue, 

saturation, intensity (HSI) color space by forcing the 

saturation to zero. The equivalent method in the RGB 
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Figure 1: (a) The RGB color space [8]. Different colors on the cube 

represent combinations of red, green, and blue. The white vertex is 

diagonally across from the black vertex and marks the points where 

R, G and B are all equal. (b) [9] The line from the black vertex (0, 0, 

0) to the white vertex (255, 255, 255) in the RGB color space 

represents the grayscale values. In desaturation, the RGB values are 

forced to move to this line.  

(a) (b) 



 

 

color space moves the point from the RGB cube surface to 

the grayscale line as shown in Fig. 1. This is done by 

averaging the maximum and minimum RGB values as 

follows:  

 

        𝐺𝑟𝑎𝑦 = 0.5(𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) + 𝑀𝑖𝑛(𝑅, 𝐺, 𝐵)). (1) 

  

Decomposition [10]: Decomposition takes each pixel 

and forces it either to its maximum or minimum value 

without regard to the color channel. In other words, each 

pixel is replaced by either the maximum or minimum 

value across all three color channels.  

Intensity [11]: The HSI color space represents the hue, 

saturation, and intensity of an image and is more useful for 

describing colors than the RGB color space. The hue, H, is 

defined as the pureness of a color (i.e. pure orange), the 

saturation, S, is the amount a pure color has been diluted 

by white light, and lastly, the intensity, I, is the gray level 

of the image.  For the purposes of converting a true color 

image into grayscale, we focus on the intensity. For 

normalized, R, G, and B values the intensity is given as:   

 

                            𝐼 =  
1

3
 (𝑅 + 𝐺 + 𝐵). (2)  

 

Luminance: The YPQ color space is defined in [12] as 

analogous to the HSI color space. Both define colors in a 

manner similar to human visual processing. For instance,  

describing a flower in terms of its RGB triplet i.e. [0 50 

125] is obscure. However, describing the color in terms of 

its lightness, and shades of color is more accessible and 

easy to understand. The YPQ color space thus defines the 

luminance, or lightness (Y), the yellow-blue levels (P), 

and the red-green levels (Q) of an image. The conversion 

between the RGB and YPQ spaces is given as:  

 

        [

𝑌𝑖

𝑃𝑖

𝑄𝑖

] =  [
0.2989 0.5870 0.1140
0.5000 0.5000 −1.000
1.0000 −1.0000 0.0000

] [

𝑅𝑖

𝐺𝑖

𝐵𝑖

]. 

(3) 

  

The results of our conversions are given in Fig. 2(a). 

After converting true color images into grayscale images 

through the aforementioned methods, we applied the in-

built jet color map to compare the effect of the different 

methods on the pseudocolored image as shown in Fig. 

2(b). 

1.2 Effect of Histogram Equalization on Pseudo-

Colored Images 

We also compared the effect of histogram equalization 

on pseudocolored images by comparing pseudocolored 

images with no contrast enhancement, pseudocolored 

images that were colored after contrast enhancement and 

pseudocolored images that were equalized after coloring.  

To equalize the histogram of the colored images, we 

Figure 2: (a) The true color baboon image was converted to grayscale using: decomposition, desaturation, intensity from the HSI color 

space, and luminance. Decomposition preserves many of the details of the original image and presents a clear and well contrasted 

image. Using desaturation to convert the true color image into grayscale resulted in the loss of many details, such as the ridges on the 

baboon’s nose. Using the intensity from the HSI color space and the luminance from the YPQ color space resulted in similar images. 

(b) Pseudocolored images. Although the grayscale decomposition image was appealing and preserved most of the details of the original 

image, applying a color map to the decomposed image results in an image in which some of the nose ridges and whiskers are difficult 

to see. The intensity and luminance grayscale images had similar results once the colors map was applied.  

(b) 

(a) 



 

 

enhanced the contrast of each true color channel. Our 

results are shown in Fig 3.  

 Fig. 3 shows the winter color map applied to an image. 

Without any histogram equalization (the image all the way 

to the left of Fig 3), the image is free of any artifacts and 

the details (the boat, birds, and plants in the right corner) 

are clearly visible. When the grayscale image is equalized 

before the application of the color map, the resulting 

pseudocolored image has a pixelated sky and some details 

are lost (the boat, birds, and landscape in the back are all 

one color causing the details to blend into each other 

where they overlap). The image on the right of Fig. 3 

depicts a pseudocolored image equalized after the 

application of the color map. This image is equalized by 

equalizing each, R, G, and B channel separately and then 

recombining them. Equalizing the histogram of the 

pseudocolored image also produces an image that is 

pixelated and in which some details are hard to make out. 

The other color maps we tested on various images (see 

supplemental material) showed similar results when their 

histograms were equalized before and after 

pseudocoloring. It is possible that the pixelation occurs 

because, in the original image, the sky is a smooth and 

uniform region. Equalizing the histogram results in a 

contrast enhancement, altering the intensity values of 

pixels in the sky and thus leading to the pixelation seen in 

the middle and right images in Fig. 3.  

2. Creating Color Maps from a True Color 

Image 

 

 After concluding that the grayscale conversion method 

and histogram equalization produced subjective results 

depending on the image, we decided to use the MATLab 

inbuilt grayscale conversion method (rgb2gray) and 

forego contrast enhancement for our pseudocoloring 

algorithm. Next, we created a color map from an input 

reference image and used it to colorize grayscale images. 

2.1 The Algorithm  

Fig. 4 depicts the algorithm for creating color maps 

based on a true color input image. We first separated the 

true color image into its R. G, and B channels and 

thresholded each channel to 16 values. In other words, we 

divided the intensities into 16 values that represented the 

entire range of intensities from 0 to 255. After 

thresholding each channel, we thresholded the grayscale 

image that we wanted to color into 16 levels as well. With 

the thresholds set, we interpolated the R, G, and B, 

channels from 16 values to 256 values with respect to the 

grayscale image intensities. The channels were 

interpolated with respect to the image we wished to color 

instead of the grayscale version of the input true color 

image because the corresponding intensities for the 

generated color map would directly correspond to the 

intensities in the image we wished to color. In general, our 

algorithm worked for a variety of colored images. In some 

cases, however, we had to adjust the levels at which we 

thresholded the image. 

2.2  Results  

 One of our generated color maps is shown in Fig. 5. 

Although we were able to successfully generate an 

accurate color map from the input image, we found that 

for images with multiple colors rather than hues of one 

color, our method did not generate accurate color maps. 

Instead of obtaining a color map which defined the range 

of colors present in the image, the generated color maps 

were all grayscale as shown in Fig. 6.  

 

Figure 3: From left to right: the winter color map applied to an image 

with no histogram equalization, the winter color map applied to a 

histogram equalized image, the winter color map applied to an image 

which was equalized after the application of a color map. The 

pseudocolored image without any equalization presents no artifacts and 

preserves all of the information in the original grayscale image.  

Figure 4: Our algorithm for creating color maps based on an 

input image. Sampling 16 points from each channel of the 

reference image and interpolating to 255 colors for each r, g, 

and b channel results in a color map based on the colors found 

in the image.  



 

 

 

 

After unsuccessfully attempting to resolve the issue, we 

realized that our algorithm lacked a matching component. 

In other words, our method did not take into consideration 

that certain regions were a certain color (i.e. that the sky 

was blue and the grass was green) but rather processed an 

input image in its entirety. Considering the image as a 

whole resulted in a gray scale image as the distribution of 

colors across the channels was uniform. Thus, 

thresholding and interpolating the entire image resulted in 

overlapping values which summed to gray color levels. 

3. Segmenting Images for Coloring Using K-

Means Clustering, Edge Detection, and 

Connectivity  

 To tackle the problem of matching, we turned to image 

segmentation. Using a true color image similar to the 

image we wished to color, we converted the true color 

image into the l*a*b* color space and segmented the 

resulting image based on color using k-means clustering. 

After segmentation, each region was turned into a binary 

mask and used to extract regions of color from the original 

true color image. With each region separated, a color map 

was generated for each region and then manually applied 

to corresponding regions of the grayscale image. Regions 

of the grayscale image were generally divided into the 

background and foreground, which were determined using 

edge detection. Our method is shown in Fig. 7.  

3.2  L*a*b* Color Space 

 The CIELAB color space, also referred to as L*a*b* 

represents a perceptually uniform color space, or one in 

which changes in the value of a color are proportional to 

the distance between the two colors in the color space 

[11]. Based on the color-opponent theory, which states 

that a color cannot be red and green or blue and yellow at 

the same time as one opponent color suppresses the other, 

the L*a*b* color space defines the lightness, L*, of a 

color, the red-green chromaticity, a*, and the blue-yellow 

chromaticity, b* [14].  

 We used the L*a*b* color space for our segmentation 

method due to the color space’s sensitivity to slight 

changes in color. Our goal was to separate regions of 

Figure 6: The result of generating a color map from a multicolored 

image. When we used a multicolor image to generate a color map, 

the produced color map was in grayscale. This occurred as our 

algorithm had no way of differentiating between regions of 

different colors and when all of the colors where considered 

together, they produced a gray scale map.  

Figure 7: Our algorithm for generating multiple color maps 

based on different objects in a true color image. Using k-means 

clustering, we divide the reference image into different regions 

based on color and then convert each cluster to a binary mask. 

This mask is eroded depending on the amount of error in the 

cluster (i.e. if the cluster was assigned parts of the image that 

were a different color than the desired color) and applied to the 

original reference image to obtain accurate regions for each color 

in the true color image. Color maps were then generated for each 

region and applied to corresponding regions of the grayscale 

image using segmentation and edge detection.    

Figure 5: Using our method, we were able to successfully 

generate an accurate color map (top right) based on the true color 

image of a pink rose. The color map was effective in coloring a 

grayscale rose. 



 

 

either similar colors or the same color, making the L*a*b* 

color space ideal for processing.  

 

3.3 K-means Clustering  

  

K-means clustering is a way of solving the clustering 

problem, which consists figuring out how to group data 

points from a given dataset in a meaningful way [15, 16]. 

In other words, the clustering problem asks how data 

points can be grouped together so that data with similar 

characteristics are placed in the same group, or cluster. 

One answer to this problem is k-means clustering, a 

method which assumes that the number of clusters, k, is 

already known. In k-mean clustering, a set of data points 

is randomly assigned to a cluster with a calculated 

centroid. The algorithm calculates the sum of the squared 

distance between the data points and the centroid until the 

sum is minimized. By minimizing the sum of the squared 

distance between the data points and the centroid, k-means 

clustering ensures that the resulting clusters consist of 

points with similar characteristics. The general algorithm 

for k-means clustering is presented in Fig. 9.  

 

We chose k-means clustering as the way to segment our 

image as we wanted to segment our image based on color. 

Clustering allowed us to group together all of the pixels of 

similar or the same color and thus proved effective for 

segmentation. 

After segmenting our true color images, we created 

binary masks for each region and applied them to the 

original image to extract the true color region. Then, color 

maps were created for each region using the method 

described in Section 2.1. The results of our method are 

given in the next section. 

Figure 10: We successfully generated accurate color maps for the purple 

rose and leaves shown in the true color image. Then, through edge 

detection, we detected the rose in the grayscale image shown and applied 

the foreground color map. The leaves color map was applied to the 

background. Although the background color is not vibrant or entirely 

visible, a difference in the background between the grayscale image and 

the pseudocolored image can be seen. 

Figure 8 [13]: The l*a*b* color space represents the lightness (l), 

amount of red or green (a*), and amount of yellow or blue (b*) in a 

color. This color space is sensitive to slight changes in color, making it 

an ideal color space for clustering.   

K data points are 
randomly selected and 
assigned to the clusters

The cluster centroids 
are calculated by 

averaging the data 
points. 

The sum of the squared 
distances between the 

centroid and data 
points is calculated.

The last step is repeated 
until the centroid no 

longer changes or until 
the maximum number of 

interations has been 
reached.

The sum of the squared 
distances is 

recalculated and the 
centroid is moved 

again. 

The centroid is moved 
in a way that decreases 
the sum of the squared 

distance. 

Figure 9: The algorithm for k-means clustering. This method 

assumes that the number of clusters, k, is already known and 

iteratively calculates the clusters by minimizing the sum of the 

squared distance between all of the data points in the cluster and 

the centroid [17].  



 

 

3.4 Results 

Using a purple rose with a leafy green background as 

our true color input image, we colored a grayscale picture 

of a rose as shown in Fig. 10 by segmenting the true color 

image into a foreground (the purple rose) and a 

background (the leafs). 

Although we were able to successfully generate color 

maps from the true color image, applying the leaf color 

map to the background of the grayscale image did not 

produce the level of color we had been hoping for. To 

determine how to produce a vibrantly colored background, 

we experimented with various parameters in our 

algorithm. We found that the amount of erosion applied to 

our binary masks greatly impacted the final pseudocolored 

imaged. Fig. 11 shows pseudocolored images with the 

structuring element for erosion set to 1, 5, and 10 

respectively.  

The image in the middle has a much more vibrant 

background than either image on its side, indicating that 

the erosion of the binary mask – which we perform to 

clean up any residual part of the image that does not fit in 

with the rest of the cluster – greatly impacts the quality of 

the final pseudocolored image. We also found that the 

level of erosion required to achieve the desired effect 

varied from image to image and that there was no optimal 

value across various images.  

We used our segmentation algorithm to generate color 

maps for the true color image shown in Fig. 6. We created 

three separate color maps: one for the sky, one for the 

grass, and one for the tree as shown in Fig. 12. After 

applying the respective color maps to each region, we 

produced the final pseudocolored image shown. As can be 

seen from Fig. 12, the final pseudocolored image has lost 

many details of the tree in the original grayscale image. 

Furthermore, our edge detection algorithm did not 

accurately detect the tree and was not able to separate the 

grass from the tree.  

To try to improve the quality of the pseudocolored 

image, we attempted to segment the tree and grass instead 

of using edge detection to find the regions to color. As 

shown in Fig. 13, our segmentation algorithm did not 

perform significantly better than our edge detection 

method in terms of detecting the tree. We were, however, 

able to successfully separate the grass from the tree and 

color the two separately. 

Figure 11: Pseudocolored images generated from the same reference image but with varying erosion strengths for the background. The 

erosion was set to 1, 5, and 10, respectively.  

Figure 12: color maps generated from the true color image in Fig. 6. 

Although we were able to successfully generate accurate color maps 

for the different regions of the reference image, our edge detection 

algorithm did not accurately detect the tree in the grayscale image. 

Furthermore, the edge detection algorithm did not differentiate 

between the grass and the tree.  



 

 

We experimented with the erosion of our binary maps 

in an attempt to produce a more vibrant sky color. Fig. 14 

shows our results and compares an erosion of 1, 2, and 5. 

In general, lowering the structuring element strength for 

erosion made the image lighter and increasing the strength 

made the image darker. We propose that, based on the 

desired output, the erosion of each binary image for each 

region (i.e. the tree, the grass, the sky) be treated 

separately and optimized individually to produce the most 

contrasted and clear pseudocolored image.  

4. Improving Segmentation Results   

 To improve on the results of the previous section, we 

implemented a region growing algorithm and a k-means 

segmentation based on a feature set [18]. Our region 

growing algorithm was not successful in effectively 

segmenting the image into different regions (i.e. the 

foreground, background, object 1, object 2, etc.) but using 

a feature vector which defined the intensity information, 

neighborhood texture information, and spatial information 

about each pixel resulted in a more effective clustering 

that was able to successfully segment the tree shown in 

Fig. 12.  

4.1 Region Growing Algorithm and Results  

 Our region growing algorithm asks the user to pick one 

point on the image as the initial seed point. Based on the 

seed point, the algorithm uses a 3 x 3 kernel to calculate 

the neighborhood of the seed and calculates both the 

weighted average and variance of the neighborhood. The 

variance is then used as the threshold with which the 

region growing algorithm compares other pixels to the 

seed pixel. Our result is given as follows  

 
𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 

= {
𝐼(𝑥, 𝑦),   𝑆𝑆 < 𝑇 ∧ 𝐼(𝑥, 𝑦) 𝑖𝑠 8 − 𝑐𝑜𝑛𝑛 𝑤𝑖𝑡ℎ 𝐼(𝑚, 𝑛) 

0,         𝑆𝑆 > 𝑇
 

 

(4) 

 

Where I(x,y) is the value of the input image at (x,y), I(m,n) 

is the seed point, SS is the threshold calculated at (x,y) and 

T is the threshold calculated at the seed. Note that the 

segmented image is only set equal to the original pixel if 

the sum of squares at that point is less than the threshold 

Figure 14: Pseudocolored images with mask erosion strengths of 1, 2, and 5, respectively. As the erosion increased, the intensity of 

the pseudocolored image decreased. We concluded that the choice of erosion is subjective ad that for each region, the erosion should 

be treated differently  

Figure 13: In an attempt to improve our pseudocoloring algorithm we 

added labels based on 8 connectivity to our edge detection 

segmentation. On the left, we have the original pseudocolored image 

using edge detection. On the right is the image pseudocolored using 

segmentation to detect various regions. Although we were able to 

successfully separate the grass and tree using segmentation, our 

algorithm still failed to accurately detect the tree.  

Figure 15: In an attempt to improve our segmentation of the grayscale 

images we wanted to pseudo-color, we implemented a region growth 

algorithm based on the variance of a 3 x 3 pixel neighborhood. 

However, our algorithm was unsuccessful in accurately detecting 

objects based on an initial seed pixel.  



 

 

and if the point is 8 connected to the seed point. If a pixel 

is 8-connected and its threshold value is equal to or below 

the seed threshold, the pixel is appended to the seeded 

pixel. If the threshold value is greater, its corresponding 

position in the segmented image is set to zero. We define 

SS as  

𝑆𝑆 = ∑(𝐼(𝑥𝑖 , 𝑦𝑖) − 𝑎𝑣𝑔)2

9

1

 

 

(5) 

 

Where avg is the weighted average of the pixel 

neighborhood given as  
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(6) 

 

T is SS calculated at the seed pixel. As shown in Fig. 15, 

our method did not successfully segment the objects from 

the input images.  

 

4.2 K-Means Segmentation Using a Feature 

Vector  

The k-means clustering algorithm we discussed in 

section 3 can be improved upon by using texture and 

spatial information to calculate the clusters. In section 3, 

the clusters were calculated based on color information. 

However, the resulting clusters (see supplemental 

material) were not entirely accurate and had to be filtered 

to obtain the desired regions. By including texture and 

spatial information about the pixels, the k-means 

algorithm has additional information which it can use to 

narrow down the results of the cluster and increase 

accuracy. For instance, a portion of the tree in the 

grayscale image in Fig. 12 has similar intensity/color 

values as the sky, resulting in an inaccurate segmentation. 

In contrast, the two objects have different textures. 

Therefore, by including texture information in our k-

means segmentation, we can more accurately segment our 

image as shown in Fig. 16. 

 The texture information was obtained using a Gabor 

filter, which is an orientation-sensitive bandpass filter [19, 

20]. Essentially, a Gabor filter is a sinusoidal signal of 

some frequency f and a particular orientation modulated 

by a Gaussian wave and is given as  

𝑔𝑚𝑛(𝑥) =  
1

2𝜋𝑎𝑛𝑏𝑛

𝑒−
1
2

𝑥𝑇𝐴𝑚𝑛𝑥𝑒𝑗𝑘0𝑚𝑛
𝑇 𝑥 

 

(7) 

 

where Amn determines the orientation and frequency range, 

or bandwidth, of the filter and k0 is the modulation 

frequency vector [21].  Once the texture information is 

obtained through the application of Gabor filters, the pixel 

positions of each pixel in the image are extracted. Finally, 

the intensity, texture, and spatial information are all put 

into one array which we will call the feature vector. This 

feature vector was then used as the input for the k-means 

clustering algorithm.  

 Although using a feature vector led to a more accurate 

segmentation compared the edge detection and labelling 

methods described in Section 3, the tree and grass were 

segmented as one object. To separate the two, we 

manually selected four pixels from the grass region to 

form a rectangular mask. Applying this mask to the tree 

cluster allowed us to separate the grass and tree. Our final 

pseudocolored image is presented in Fig. 18.  

 

Figure 16: Using texture, spatial, and intensity information we 

were able to use k-means clustering to more accurately detect 

objects in the grayscale images we wished to color. Despite the 

improved accuracy, the segmentation is not exact as the segmented 

tree image contains some regions of the sky.   
Figure 17: Separated grass and tree objects. Our k-means 

clustering algorithm segmented the tree and grass as one object 

whereas our goal was to segment the two separately. To extract the 

grass region from the tree + grass cluster, we manually selected 

pixels from the grass region to form a rectangular mask. This mask 

was then applied to the cluster to extract the grass.  



 

 

Conclusion 

 We developed an algorithm to create color maps for 

different objects in a true color image. We then used the 

color maps to pseudocolor similar objects in grayscale 

images. We chose to forgo histogram equalization as our 

initial analysis of the impact of histogram equalization on 

pseudocoloring showed that the results were subjective 

and varied from image to image.  

Our method achieved mixed results. For solid objects 

without any holes or gaps, such as a rose, our method was 

very effective in both generating color maps and applying 

them to the target image. On the other hand, for objects 

with less connectivity/starker changes in intensity in the 

grayscale image, our algorithm failed to accurately detect 

the target object. We then proposed a modified version of 

our method and used k-means segmentation with texture, 

spatial, and intensity information to segment the image we 

wished to color. Although this method was a great 

improvement on our original method and the segmentation 

accuracy significantly improved, there was still reasonable 

error in our segmentation. We propose that an algorithm 

that uses matching or learning to detect and label objects 

in an image would be more effective and accurate at 

detecting the target object and applying the color map.   

For future research we wish to incorporate a matching 

algorithm in place of using either edge detection or 

segmentation. By doing so, we can automate the 

pseudocoloring process and decrease user involvement. 

Currently, we must manually change the threshold level, 

the structuring element value, the number of clusters, and 

must manually segment the grass in section 4 after the 

initial k-means segmentation. Producing an algorithm 

which can guess, test, and optimize such parameters on its 

own would lead to a much more efficient process.  
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Figure 18: Our final pseudocolored image 


