How Can a Grayscale Image be Pseudocolored based on a Similar True Color
Image?

Zoya Shafique
Final Project Report
Digital Image Processing

Abstract

Pseudocoloring is widely used to not only enhance the
visual appeal of images but also to highlight important
details. As such, it plays an important part in data
visualization in many fields. In this paper, we propose a
method for pseudocoloring images based on the generation
of a color map from a true color image with similar objects
present as the grayscale image we would like to color. We
first use k-means clustering to segment regions of the true
color image based on their color and then create a color
map for each region. Then, each map is applied to the
corresponding region of the gray scale image using edge
detection. For more accurate segmentation, we introduce a
feature vector containing texture, spatial, and intensity
information. Our method was successful in transferring
colors from a specified true color image to a grayscale
image. We also discuss an attempt at a region growing
algorithm for segmentation.

Introduction

A technique for mapping gray level intensities to red,
green, and blue values either through a table or function,
pseudocoloring is an important aspect of data visualization
in many fields [1]. For instance, grayscale images taken by
the Hubble Space telescope are pseudocolored to represent

the image. We then employ k-means clustering to segment
our image and create color maps for each cluster.

1. Initial Qualitative Analysis of Pre/post
processing techniques on Pseudocolored
Images

Pseudocoloring techniques map gray level intensities to
specific values of red, green, and blue to create color
images. In this section, we explore histogram equalization
and various methods for creating grayscale images and
their impact on pseudocolored images.

Black

d
oamn (245.0,0)

White
(255,255, 259)

Figure 1: (a) The RGB color space [8]. Different colors on the cube
represent combinations of red, green, and blue. The white vertex is
diagonally across from the black vertex and marks the points where
R, G and B are all equal. (b) [9] The line from the black vertex (0, O,
0) to the white vertex (255, 255, 255) in the RGB color space
represents the grayscale values. In desaturation, the RGB values are
forced to move to this line.

distributions of different gases and compounds [2]. Current
methods for pseudocoloring involve applying color maps
[3], which are arrays of colors indexed to correspond to
specific intensity levels, or color matching between two
images [4]. Pseudocoloring techniques in the frequency
domain have also been discussed [5, 6].

Although various methods exist for image coloration
based on existing images [7], they involve complex
matching algorithms. In this paper, we propose a method
for image coloration based on an existing, similar image
that relies on segmentation. Our algorithm does not color
match, but relies on manual user input to segment a true
color image to create color maps and then apply them to a
grayscale image. We create color maps from true color
images by selecting values indicative of the range of colors
in each red, green, and blue (RGB) channel of the true color
image and then interpolate to create a color map based on

1.1 Qualitative Comparison of True Color to
Grayscale Conversion Methods

We compared four grayscale conversion methods:
desaturation, decomposition, intensity in an HSI color
space, and luminance.

Desaturation [10]: Desaturation works in the hue,
saturation, intensity (HSI) color space by forcing the
saturation to zero. The equivalent method in the RGB

Desaturation

Figure 2: (a) The true color baboon image was converted to grayscale using: decomposition, desaturation, intensity from the HSI color
space, and luminance. Decomposition preserves many of the details of the original image and presents a clear and well contrasted
image. Using desaturation to convert the true color image into grayscale resulted in the loss of many details, such as the ridges on the
baboon’s nose. Using the intensity from the HSI color space and the luminance from the YPQ color space resulted in similar images.
(b) Pseudocolored images. Although the grayscale decomposition image was appealing and preserved most of the details of the original
image, applying a color map to the decomposed image results in an image in which some of the nose ridges and whiskers are difficult
to see. The intensity and luminance grayscale images had similar results once the colors map was applied.

color space moves the point from the RGB cube surface to
the grayscale line as shown in Fig. 1. This is done by
averaging the maximum and minimum RGB values as
follows:

Gray = 0.5(Max(R,G,B) + Min(R,G,B)). (1)

Decomposition [10]: Decomposition takes each pixel
and forces it either to its maximum or minimum value
without regard to the color channel. In other words, each
pixel is replaced by either the maximum or minimum
value across all three color channels.

Intensity [11]: The HSI color space represents the hue,
saturation, and intensity of an image and is more useful for
describing colors than the RGB color space. The hue, H, is
defined as the pureness of a color (i.e. pure orange), the
saturation, S, is the amount a pure color has been diluted
by white light, and lastly, the intensity, |, is the gray level
of the image. For the purposes of converting a true color
image into grayscale, we focus on the intensity. For
normalized, R, G, and B values the intensity is given as:

I=3((R+G+B). 2

Luminance: The YPQ color space is defined in [12] as
analogous to the HSI color space. Both define colors in a
manner similar to human visual processing. For instance,

describing a flower in terms of its RGB triplet i.e. [0 50
125] is obscure. However, describing the color in terms of
its lightness, and shades of color is more accessible and
easy to understand. The YPQ color space thus defines the
luminance, or lightness (), the yellow-blue levels (P),
and the red-green levels (Q) of an image. The conversion
between the RGB and YPQ spaces is given as:

Y; 02989 05870 0.11407[R:]1 (3)
P;|= 105000 0.5000 —1.000||G|.
Q1 11.0000 -1.0000 0.0000!LB;

The results of our conversions are given in Fig. 2(a).
After converting true color images into grayscale images
through the aforementioned methods, we applied the in-
built jet color map to compare the effect of the different
methods on the pseudocolored image as shown in Fig.
2(b).

1.2 Effect of Histogram Equalization on Pseudo-
Colored Images

We also compared the effect of histogram equalization
on pseudocolored images by comparing pseudocolored
images with no contrast enhancement, pseudocolored
images that were colored after contrast enhancement and
pseudocolored images that were equalized after coloring.
To equalize the histogram of the colored images, we

enhanced the contrast of each true color channel. Our
results are shown in Fig 3.

Image wi Color Map Applied Equalized Image w! Color Map Applied Image Equalized After Color Map Application

Figure 3: From left to right: the winter color map applied to an image
with no histogram equalization, the winter color map applied to a
histogram equalized image, the winter color map applied to an image
which was equalized after the application of a color map. The
pseudocolored image without any equalization presents no artifacts and
preserves all of the information in the original grayscale image.

Fig. 3 shows the winter color map applied to an image.
Without any histogram equalization (the image all the way
to the left of Fig 3), the image is free of any artifacts and
the details (the boat, birds, and plants in the right corner)
are clearly visible. When the grayscale image is equalized
before the application of the color map, the resulting
pseudocolored image has a pixelated sky and some details
are lost (the boat, birds, and landscape in the back are all
one color causing the details to blend into each other
where they overlap). The image on the right of Fig. 3
depicts a pseudocolored image equalized after the
application of the color map. This image is equalized by
equalizing each, R, G, and B channel separately and then
recombining them. Equalizing the histogram of the
pseudocolored image also produces an image that is
pixelated and in which some details are hard to make out.

The other color maps we tested on various images (see
supplemental material) showed similar results when their
histograms were equalized before and after
pseudocoloring. It is possible that the pixelation occurs
because, in the original image, the sky is a smooth and
uniform region. Equalizing the histogram results in a
contrast enhancement, altering the intensity values of
pixels in the sky and thus leading to the pixelation seen in
the middle and right images in Fig. 3.

2. Creating Color Maps from a True Color
Image

After concluding that the grayscale conversion method
and histogram equalization produced subjective results
depending on the image, we decided to use the MATLab
inbuilt grayscale conversion method (rgh2gray) and
forego contrast enhancement for our pseudocoloring
algorithm. Next, we created a color map from an input
reference image and used it to colorize grayscale images.

2.1 The Algorithm

Divide image
intoR, G, and
B channels

Threshold
each channel
into 16 levels

Threshold
grayscale
image into 16
levels

Interpolate RGB
channels with

respect to grayscale
levels to find 266
colors

Figure 4: Our algorithm for creating color maps based on an
input image. Sampling 16 points from each channel of the
reference image and interpolating to 255 colors for each r, g,
and b channel results in a color map based on the colors found
in the image.

Fig. 4 depicts the algorithm for creating color maps
based on a true color input image. We first separated the
true color image into its R. G, and B channels and
thresholded each channel to 16 values. In other words, we
divided the intensities into 16 values that represented the
entire range of intensities from 0 to 255. After
thresholding each channel, we thresholded the grayscale
image that we wanted to color into 16 levels as well. With
the thresholds set, we interpolated the R, G, and B,
channels from 16 values to 256 values with respect to the
grayscale image intensities. The channels were
interpolated with respect to the image we wished to color
instead of the grayscale version of the input true color
image because the corresponding intensities for the
generated color map would directly correspond to the
intensities in the image we wished to color. In general, our
algorithm worked for a variety of colored images. In some
cases, however, we had to adjust the levels at which we
thresholded the image.

2.2 Results

One of our generated color maps is shown in Fig. 5.
Although we were able to successfully generate an
accurate color map from the input image, we found that
for images with multiple colors rather than hues of one
color, our method did not generate accurate color maps.
Instead of obtaining a color map which defined the range
of colors present in the image, the generated color maps
were all grayscale as shown in Fig. 6.

Colormap from Image

Figure 5: Using our method, we were able to successfully
generate an accurate color map (top right) based on the true color
image of a pink rose. The color map was effective in coloring a
grayscale rose.

After unsuccessfully attempting to resolve the issue, we
realized that our algorithm lacked a matching component.
In other words, our method did not take into consideration
that certain regions were a certain color (i.e. that the sky
was blue and the grass was green) but rather processed an
input image in its entirety. Considering the image as a
whole resulted in a gray scale image as the distribution of
colors across the channels was uniform. Thus,
thresholding and interpolating the entire image resulted in
overlapping values which summed to gray color levels.

Colormap from Image

100

150

200

20

2 4 [} B 10

Figure 6: The result of generating a color map from a multicolored
image. When we used a multicolor image to generate a color map,
the produced color map was in grayscale. This occurred as our
algorithm had no way of differentiating between regions of
different colors and when all of the colors where considered

3. Segmenting Images for Coloring Using K-
Means Clustering, Edge Detection, and
Connectivity

To tackle the problem of matching, we turned to image
segmentation. Using a true color image similar to the
image we wished to color, we converted the true color
image into the I*a*b* color space and segmented the
resulting image based on color using k-means clustering.
After segmentation, each region was turned into a binary
mask and used to extract regions of color from the original
true color image. With each region separated, a color map
was generated for each region and then manually applied
to corresponding regions of the grayscale image. Regions
of the grayscale image were generally divided into the
background and foreground, which were determined using
edge detection. Our method is shown in Fig. 7.

Create masks for the
foreground and
background from
clusters

Read in reference Use K-means
image and convert to e clustering to divide
la*b* color space the image

Detect regions in
grayscale image
through edge

Apply masks to
reference image to
separate regions
based on color

Create a color map

for each region detection or

segmentation

Apply color map to
appropriate region

Figure 7: Our algorithm for generating multiple color maps
based on different objects in a true color image. Using k-means
clustering, we divide the reference image into different regions
based on color and then convert each cluster to a binary mask.
This mask is eroded depending on the amount of error in the
cluster (i.e. if the cluster was assigned parts of the image that
were a different color than the desired color) and applied to the
original reference image to obtain accurate regions for each color
in the true color image. Color maps were then generated for each
region and applied to corresponding regions of the grayscale
image using segmentation and edge detection.

3.2 L*a*b* Color Space

The CIELAB color space, also referred to as L*a*b*
represents a perceptually uniform color space, or one in
which changes in the value of a color are proportional to
the distance between the two colors in the color space
[11]. Based on the color-opponent theory, which states
that a color cannot be red and green or blue and yellow at
the same time as one opponent color suppresses the other,
the L*a*b* color space defines the lightness, L*, of a
color, the red-green chromaticity, a*, and the blue-yellow
chromaticity, b* [14].

We used the L*a*b* color space for our segmentation
method due to the color space’s sensitivity to slight
changes in color. Our goal was to separate regions of

either similar colors or the same color, making the L*a*b*
color space ideal for processing.

Figure 8 [13]: The I*a*b* color space represents the lightness (l),
amount of red or green (a*), and amount of yellow or blue (b*) in a
color. This color space is sensitive to slight changes in color, making it
an ideal color space for clustering.

3.3 K-means Clustering

The centroid is moved
in a way that decreases

K data points are the sum of the squared
randomly selected and distance.

assigned to the clusters

The sum of the squared

. distances is
The cluster centroids recalculated and the

are calculated by centroid is moved
averaging the data again.

points.

The last step is repeated
until the centroid no
longer changes or until
the maximum number of
interations has been
reached.

The sum of the squared
distances between the
centroid and data
points is calculated.

Figure 9: The algorithm for k-means clustering. This method
assumes that the number of clusters, k, is already known and
iteratively calculates the clusters by minimizing the sum of the
squared distance between all of the data points in the cluster and
the centroid [17].

K-means clustering is a way of solving the clustering
problem, which consists figuring out how to group data
points from a given dataset in a meaningful way [15, 16].
In other words, the clustering problem asks how data
points can be grouped together so that data with similar
characteristics are placed in the same group, or cluster.
One answer to this problem is k-means clustering, a
method which assumes that the number of clusters, k, is
already known. In k-mean clustering, a set of data points
is randomly assigned to a cluster with a calculated
centroid. The algorithm calculates the sum of the squared
distance between the data points and the centroid until the
sum is minimized. By minimizing the sum of the squared

distance between the data points and the centroid, k-means
clustering ensures that the resulting clusters consist of
points with similar characteristics. The general algorithm
for k-means clustering is presented in Fig. 9.

We chose k-means clustering as the way to segment our
image as we wanted to segment our image based on color.
Clustering allowed us to group together all of the pixels of
similar or the same color and thus proved effective for
segmentation.

After segmenting our true color images, we created
binary masks for each region and applied them to the
original image to extract the true color region. Then, color
maps were created for each region using the method
described in Section 2.1. The results of our method are
given in the next section.

T« T -
-

Colormap from Image (Background) Colormap from Image (Foreground)

Figure 10: We successfully generated accurate color maps for the purple
rose and leaves shown in the true color image. Then, through edge
detection, we detected the rose in the grayscale image shown and applied
the foreground color map. The leaves color map was applied to the
background. Although the background color is not vibrant or entirely
visible, a difference in the background between the grayscale image and

the pseudocolored image can be seen.

Figure 11: Pseudocolored images generated from the same reference image but with varying erosion strengths for the background. The

erosion was set to 1, 5, and 10, respectively.

3.4 Results

Using a purple rose with a leafy green background as
our true color input image, we colored a grayscale picture
of a rose as shown in Fig. 10 by segmenting the true color
image into a foreground (the purple rose) and a
background (the leafs).

Although we were able to successfully generate color
maps from the true color image, applying the leaf color
map to the background of the grayscale image did not
produce the level of color we had been hoping for. To
determine how to produce a vibrantly colored background,
we experimented with various parameters in our
algorithm. We found that the amount of erosion applied to

Colormap from kesge ioky| s
- w
= i iﬂ =

Colormo from msge arsss) Colomsp from Image i

)
]]
0o 0o
oz) 2
. |ﬂ ». |ﬂ

Pusudocolornd Image

Figure 12: color maps generated from the true color image in Fig. 6.
Although we were able to successfully generate accurate color maps
for the different regions of the reference image, our edge detection
algorithm did not accurately detect the tree in the grayscale image.
Furthermore, the edge detection algorithm did not differentiate
between the grass and the tree.

our binary masks greatly impacted the final pseudocolored
imaged. Fig. 11 shows pseudocolored images with the
structuring element for erosion setto 1, 5, and 10
respectively.

The image in the middle has a much more vibrant
background than either image on its side, indicating that
the erosion of the binary mask — which we perform to
clean up any residual part of the image that does not fit in
with the rest of the cluster — greatly impacts the quality of
the final pseudocolored image. We also found that the
level of erosion required to achieve the desired effect
varied from image to image and that there was no optimal
value across various images.

We used our segmentation algorithm to generate color
maps for the true color image shown in Fig. 6. We created
three separate color maps: one for the sky, one for the
grass, and one for the tree as shown in Fig. 12. After
applying the respective color maps to each region, we
produced the final pseudocolored image shown. As can be
seen from Fig. 12, the final pseudocolored image has lost
many details of the tree in the original grayscale image.
Furthermore, our edge detection algorithm did not
accurately detect the tree and was not able to separate the
grass from the tree.

To try to improve the quality of the pseudocolored
image, we attempted to segment the tree and grass instead
of using edge detection to find the regions to color. As
shown in Fig. 13, our segmentation algorithm did not
perform significantly better than our edge detection
method in terms of detecting the tree. We were, however,
able to successfully separate the grass from the tree and
color the two separately.

Figure 14: Pseudocolored images with mask erosion strengths of 1, 2, and 5, respectively. As the erosion increased, the intensity of
the pseudocolored image decreased. We concluded that the choice of erosion is subjective ad that for each region, the erosion should

be treated differently

We experimented with the erosion of our binary maps
in an attempt to produce a more vibrant sky color. Fig. 14
shows our results and compares an erosion of 1, 2, and 5.
In general, lowering the structuring element strength for
erosion made the image lighter and increasing the strength
made the image darker. We propose that, based on the
desired output, the erosion of each binary image for each
region (i.e. the tree, the grass, the sky) be treated
separately and optimized individually to produce the most
contrasted and clear pseudocolored image.

Figure 13: In an attempt to improve our pseudocoloring algorithm we
added labels based on 8 connectivity to our edge detection
segmentation. On the left, we have the original pseudocolored image
using edge detection. On the right is the image pseudocolored using
segmentation to detect various regions. Although we were able to
successfully separate the grass and tree using segmentation, our
algorithm still failed to accurately detect the tree.

4. Improving Segmentation Results

To improve on the results of the previous section, we
implemented a region growing algorithm and a k-means
segmentation based on a feature set [18]. Our region
growing algorithm was not successful in effectively
segmenting the image into different regions (i.e. the
foreground, background, object 1, object 2, etc.) but using
a feature vector which defined the intensity information,
neighborhood texture information, and spatial information
about each pixel resulted in a more effective clustering
that was able to successfully segment the tree shown in
Fig. 12.

4.1 Region Growing Algorithm and Results

Figure 15: In an attempt to improve our segmentation of the grayscale
images we wanted to pseudo-color, we implemented a region growth
algorithm based on the variance of a 3 x 3 pixel neighborhood.
However, our algorithm was unsuccessful in accurately detecting
objects based on an initial seed pixel.

Our region growing algorithm asks the user to pick one
point on the image as the initial seed point. Based on the
seed point, the algorithm uses a 3 x 3 kernel to calculate
the neighborhood of the seed and calculates both the
weighted average and variance of the neighborhood. The
variance is then used as the threshold with which the
region growing algorithm compares other pixels to the
seed pixel. Our result is given as follows

Segmented Image
_ {I(x, y), SS<T Al(x,y)is8 —connwithI(m,n) (4)
- 0, SS>T

Where I(x,y) is the value of the input image at (x,y), I(m,n)
is the seed point, SS is the threshold calculated at (x,y) and
T is the threshold calculated at the seed. Note that the
segmented image is only set equal to the original pixel if
the sum of squares at that point is less than the threshold

and if the point is 8 connected to the seed point. If a pixel
is 8-connected and its threshold value is equal to or below
the seed threshold, the pixel is appended to the seeded
pixel. If the threshold value is greater, its corresponding
position in the segmented image is set to zero. We define
SS as

9
55 =) UG,y - avgy’ ©)
1

Where avg is the weighted average of the pixel
neighborhood given as

I(x-1y-1) 2¥(xy-1) I(x+1y-1)

1 « X 2*l(x-1y) 4*(xy) 2¥(x+1y)

Ix-1y+1) | 249xy+1) | Ix+1y+1) | (6)

T is SS calculated at the seed pixel. As shown in Fig. 15,
our method did not successfully segment the objects from
the input images.

4.2 K-Means Segmentation Using a Feature
Vector

Figure 16: Using texture, spatial, and intensity information we
were able to use k-means clustering to more accurately detect
objects in the grayscale images we wished to color. Despite the
improved accuracy, the segmentation is not exact as the segmented
tree image contains some regions of the sky.

The k-means clustering algorithm we discussed in
section 3 can be improved upon by using texture and
spatial information to calculate the clusters. In section 3,
the clusters were calculated based on color information.
However, the resulting clusters (see supplemental
material) were not entirely accurate and had to be filtered

to obtain the desired regions. By including texture and
spatial information about the pixels, the k-means
algorithm has additional information which it can use to
narrow down the results of the cluster and increase
accuracy. For instance, a portion of the tree in the
grayscale image in Fig. 12 has similar intensity/color
values as the sky, resulting in an inaccurate segmentation.
In contrast, the two objects have different textures.
Therefore, by including texture information in our k-
means segmentation, we can more accurately segment our
image as shown in Fig. 16.

The texture information was obtained using a Gabor
filter, which is an orientation-sensitive bandpass filter [19,
20]. Essentially, a Gabor filter is a sinusoidal signal of
some frequency f and a particular orientation modulated
by a Gaussian wave and is given as

_ —leAmnx 'kT X

Gmn(x) = 2ma,b, e 2 e’ omn)
where Amn determines the orientation and frequency range,
or bandwidth, of the filter and ko is the modulation
frequency vector [21]. Once the texture information is
obtained through the application of Gabor filters, the pixel
positions of each pixel in the image are extracted. Finally,
the intensity, texture, and spatial information are all put
into one array which we will call the feature vector. This
feature vector was then used as the input for the k-means
clustering algorithm.

Although using a feature vector led to a more accurate
segmentation compared the edge detection and labelling
methods described in Section 3, the tree and grass were
segmented as one object. To separate the two, we
manually selected four pixels from the grass region to
form a rectangular mask. Applying this mask to the tree
cluster allowed us to separate the grass and tree. Our final
pseudocolored image is presented in Fig. 18.

Figure 17: Separated grass and tree objects. Our k-means
clustering algorithm segmented the tree and grass as one object
whereas our goal was to segment the two separately. To extract the
grass region from the tree + grass cluster, we manually selected
pixels from the grass region to form a rectangular mask. This mask
was then applied to the cluster to extract the grass.

Figure 18: Our final pseudocolored image

Conclusion

We developed an algorithm to create color maps for
different objects in a true color image. We then used the
color maps to pseudocolor similar objects in grayscale
images. We chose to forgo histogram equalization as our
initial analysis of the impact of histogram equalization on
pseudocoloring showed that the results were subjective
and varied from image to image.

Our method achieved mixed results. For solid objects
without any holes or gaps, such as a rose, our method was
very effective in both generating color maps and applying
them to the target image. On the other hand, for objects
with less connectivity/starker changes in intensity in the
grayscale image, our algorithm failed to accurately detect
the target object. We then proposed a modified version of
our method and used k-means segmentation with texture,
spatial, and intensity information to segment the image we
wished to color. Although this method was a great
improvement on our original method and the segmentation
accuracy significantly improved, there was still reasonable
error in our segmentation. We propose that an algorithm
that uses matching or learning to detect and label objects
in an image would be more effective and accurate at
detecting the target object and applying the color map.

For future research we wish to incorporate a matching
algorithm in place of using either edge detection or
segmentation. By doing so, we can automate the
pseudocoloring process and decrease user involvement.
Currently, we must manually change the threshold level,
the structuring element value, the number of clusters, and
must manually segment the grass in section 4 after the
initial k-means segmentation. Producing an algorithm
which can guess, test, and optimize such parameters on its
own would lead to a much more efficient process.

References

[1] S.E..Umbaugh. Digital Image Processing and Analysis. 2"
ed. CRC Press. 2010.

[2] J.Orwig. Iconic Hubble images are actually black-and-white.
Insider. 2015.

[3] Selvapriya B., Raghu B. “A color map for pseudo color
image processing of medical images,” International Journal
of Engineering and Technology 7(3.34), pp 954-958, 2018.

[4] M. Grundland. N. A. Dodgson. Color histogram specification
by Histogram Warping. Society of Photo-Optical
Instrumentation Engineers, 5667 (2005).

[5] K. A. Navas, P. R. Naveen, G. Thottan, R. Jayadevan and S.
Assim, "A novel frequency domain approach to automated
pseudo-colouring of images,” 2011 IEEE Recent Advances
in Intelligent Computational Systems, 2011, pp. 533-536,
doi: 10.1109/RAICS.2011.6069369.

[6] J. Afruz, V. Wilson, S. E. Umbaugh. “Frequency domain
pseudo-color to enhance ultrasound images,” 2010 CCSE
Computer and Information Science 3(4).

[7]1 R.Jayadevan, K. A. Navas, A. Ananthan, K. N. Latha. “A
review on recent pseudo-coloring techniques,” IJSTE 1(11),
pp 334 — 348, 2015.

[8] Image Processing Toolbox User’s Guide. Mathworks.

[9] F. Karstens. What is the RGB color space? Baslerweb.com.

[10] T. Helland. Seven grayscale converstion algorithms.
Tannerhelland.com. 2011.

[11] R. C. Gonzalez, R. E. Woods. “Digital Image Processing,”
3 ed. pp 407 - 414, 2008.

[12] M. Grundland, N. A. Dodgson. The decolorize algorithm for
contrast enhancing, color to grayscale conversion. 2005.

[13] T. Mouw. LAB Color Values. X-Rite. 2018.

[14] Identifying Color Differences Using L*a*b* or L*C*H*
Coordinates. Konica Minolta.

[15] A. Likas. N. Vlassis. J. J. Verbeek. The global k-means
clustering algorithm. [Technical Report] 1AS-UVA-01-02,
2001, pp.12. ffinria-00321515f.

[16] D. T. Pham. S. S. Dimov. C. D. Nguyen. Selection of K in K-
means clustering. J. Mechanical Engineering Science,
219:103-119, 2004.

[17] ML — Clustering K-Means Algorithm. Tutorialspoint.

[18] imsegkmeans. Mathworks Documntation. (2021)

[19] Aach, T.; Kaup, A.; Mester, R.: ,On texture analysis: Local

energy transforms versus quadrature filters." In Signal Processing,

vol. 45, pp. 173-181, 1995

[20] P. Joshi. “Understanding Gabor Filters”. Perpetual Engima

(2014).

[21] Gabor Filters, The Computer Vision Lab at GET, University

of Paderborn (1998).

