

Abstract

Pseudocoloring is widely used to not only enhance the

visual appeal of images but also to highlight important

details. As such, it plays an important part in data

visualization in many fields. In this paper, we propose a

method for pseudocoloring images based on the generation

of a color map from a true color image with similar objects

present as the grayscale image we would like to color. We

first use k-means clustering to segment regions of the true

color image based on their color and then create a color

map for each region. Then, each map is applied to the

corresponding region of the gray scale image using edge

detection. For more accurate segmentation, we introduce a

feature vector containing texture, spatial, and intensity

information. Our method was successful in transferring

colors from a specified true color image to a grayscale

image. We also discuss an attempt at a region growing

algorithm for segmentation.

Introduction

A technique for mapping gray level intensities to red,

green, and blue values either through a table or function,

pseudocoloring is an important aspect of data visualization

in many fields [1]. For instance, grayscale images taken by

the Hubble Space telescope are pseudocolored to represent

distributions of different gases and compounds [2]. Current

methods for pseudocoloring involve applying color maps

[3], which are arrays of colors indexed to correspond to

specific intensity levels, or color matching between two

images [4]. Pseudocoloring techniques in the frequency

domain have also been discussed [5, 6].

Although various methods exist for image coloration

based on existing images [7], they involve complex

matching algorithms. In this paper, we propose a method

for image coloration based on an existing, similar image

that relies on segmentation. Our algorithm does not color

match, but relies on manual user input to segment a true

color image to create color maps and then apply them to a

grayscale image. We create color maps from true color

images by selecting values indicative of the range of colors

in each red, green, and blue (RGB) channel of the true color

image and then interpolate to create a color map based on

the image. We then employ k-means clustering to segment

our image and create color maps for each cluster.

1. Initial Qualitative Analysis of Pre/post

processing techniques on Pseudocolored

Images

 Pseudocoloring techniques map gray level intensities to

specific values of red, green, and blue to create color

images. In this section, we explore histogram equalization

and various methods for creating grayscale images and

their impact on pseudocolored images.

1.1 Qualitative Comparison of True Color to

Grayscale Conversion Methods

 We compared four grayscale conversion methods:

desaturation, decomposition, intensity in an HSI color

space, and luminance.

Desaturation [10]: Desaturation works in the hue,

saturation, intensity (HSI) color space by forcing the

saturation to zero. The equivalent method in the RGB

How Can a Grayscale Image be Pseudocolored based on a Similar True Color

Image?

Zoya Shafique

Final Project Report

Digital Image Processing

I2200 Spring 2021

Figure 1: (a) The RGB color space [8]. Different colors on the cube

represent combinations of red, green, and blue. The white vertex is

diagonally across from the black vertex and marks the points where

R, G and B are all equal. (b) [9] The line from the black vertex (0, 0,

0) to the white vertex (255, 255, 255) in the RGB color space

represents the grayscale values. In desaturation, the RGB values are

forced to move to this line.

(a) (b)

color space moves the point from the RGB cube surface to

the grayscale line as shown in Fig. 1. This is done by

averaging the maximum and minimum RGB values as

follows:

 𝐺𝑟𝑎𝑦 = 0.5(𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) + 𝑀𝑖𝑛(𝑅, 𝐺, 𝐵)). (1)

Decomposition [10]: Decomposition takes each pixel

and forces it either to its maximum or minimum value

without regard to the color channel. In other words, each

pixel is replaced by either the maximum or minimum

value across all three color channels.

Intensity [11]: The HSI color space represents the hue,

saturation, and intensity of an image and is more useful for

describing colors than the RGB color space. The hue, H, is

defined as the pureness of a color (i.e. pure orange), the

saturation, S, is the amount a pure color has been diluted

by white light, and lastly, the intensity, I, is the gray level

of the image. For the purposes of converting a true color

image into grayscale, we focus on the intensity. For

normalized, R, G, and B values the intensity is given as:

 𝐼 =
1

3
 (𝑅 + 𝐺 + 𝐵). (2)

Luminance: The YPQ color space is defined in [12] as

analogous to the HSI color space. Both define colors in a

manner similar to human visual processing. For instance,

describing a flower in terms of its RGB triplet i.e. [0 50

125] is obscure. However, describing the color in terms of

its lightness, and shades of color is more accessible and

easy to understand. The YPQ color space thus defines the

luminance, or lightness (Y), the yellow-blue levels (P),

and the red-green levels (Q) of an image. The conversion

between the RGB and YPQ spaces is given as:

 [

𝑌𝑖

𝑃𝑖

𝑄𝑖

] = [
0.2989 0.5870 0.1140
0.5000 0.5000 −1.000
1.0000 −1.0000 0.0000

] [

𝑅𝑖

𝐺𝑖

𝐵𝑖

].

(3)

The results of our conversions are given in Fig. 2(a).

After converting true color images into grayscale images

through the aforementioned methods, we applied the in-

built jet color map to compare the effect of the different

methods on the pseudocolored image as shown in Fig.

2(b).

1.2 Effect of Histogram Equalization on Pseudo-

Colored Images

We also compared the effect of histogram equalization

on pseudocolored images by comparing pseudocolored

images with no contrast enhancement, pseudocolored

images that were colored after contrast enhancement and

pseudocolored images that were equalized after coloring.

To equalize the histogram of the colored images, we

Figure 2: (a) The true color baboon image was converted to grayscale using: decomposition, desaturation, intensity from the HSI color

space, and luminance. Decomposition preserves many of the details of the original image and presents a clear and well contrasted

image. Using desaturation to convert the true color image into grayscale resulted in the loss of many details, such as the ridges on the

baboon’s nose. Using the intensity from the HSI color space and the luminance from the YPQ color space resulted in similar images.

(b) Pseudocolored images. Although the grayscale decomposition image was appealing and preserved most of the details of the original

image, applying a color map to the decomposed image results in an image in which some of the nose ridges and whiskers are difficult

to see. The intensity and luminance grayscale images had similar results once the colors map was applied.

(b)

(a)

enhanced the contrast of each true color channel. Our

results are shown in Fig 3.

 Fig. 3 shows the winter color map applied to an image.

Without any histogram equalization (the image all the way

to the left of Fig 3), the image is free of any artifacts and

the details (the boat, birds, and plants in the right corner)

are clearly visible. When the grayscale image is equalized

before the application of the color map, the resulting

pseudocolored image has a pixelated sky and some details

are lost (the boat, birds, and landscape in the back are all

one color causing the details to blend into each other

where they overlap). The image on the right of Fig. 3

depicts a pseudocolored image equalized after the

application of the color map. This image is equalized by

equalizing each, R, G, and B channel separately and then

recombining them. Equalizing the histogram of the

pseudocolored image also produces an image that is

pixelated and in which some details are hard to make out.

The other color maps we tested on various images (see

supplemental material) showed similar results when their

histograms were equalized before and after

pseudocoloring. It is possible that the pixelation occurs

because, in the original image, the sky is a smooth and

uniform region. Equalizing the histogram results in a

contrast enhancement, altering the intensity values of

pixels in the sky and thus leading to the pixelation seen in

the middle and right images in Fig. 3.

2. Creating Color Maps from a True Color

Image

 After concluding that the grayscale conversion method

and histogram equalization produced subjective results

depending on the image, we decided to use the MATLab

inbuilt grayscale conversion method (rgb2gray) and

forego contrast enhancement for our pseudocoloring

algorithm. Next, we created a color map from an input

reference image and used it to colorize grayscale images.

2.1 The Algorithm

Fig. 4 depicts the algorithm for creating color maps

based on a true color input image. We first separated the

true color image into its R. G, and B channels and

thresholded each channel to 16 values. In other words, we

divided the intensities into 16 values that represented the

entire range of intensities from 0 to 255. After

thresholding each channel, we thresholded the grayscale

image that we wanted to color into 16 levels as well. With

the thresholds set, we interpolated the R, G, and B,

channels from 16 values to 256 values with respect to the

grayscale image intensities. The channels were

interpolated with respect to the image we wished to color

instead of the grayscale version of the input true color

image because the corresponding intensities for the

generated color map would directly correspond to the

intensities in the image we wished to color. In general, our

algorithm worked for a variety of colored images. In some

cases, however, we had to adjust the levels at which we

thresholded the image.

2.2 Results

 One of our generated color maps is shown in Fig. 5.

Although we were able to successfully generate an

accurate color map from the input image, we found that

for images with multiple colors rather than hues of one

color, our method did not generate accurate color maps.

Instead of obtaining a color map which defined the range

of colors present in the image, the generated color maps

were all grayscale as shown in Fig. 6.

Figure 3: From left to right: the winter color map applied to an image

with no histogram equalization, the winter color map applied to a

histogram equalized image, the winter color map applied to an image

which was equalized after the application of a color map. The

pseudocolored image without any equalization presents no artifacts and

preserves all of the information in the original grayscale image.

Figure 4: Our algorithm for creating color maps based on an

input image. Sampling 16 points from each channel of the

reference image and interpolating to 255 colors for each r, g,

and b channel results in a color map based on the colors found

in the image.

After unsuccessfully attempting to resolve the issue, we

realized that our algorithm lacked a matching component.

In other words, our method did not take into consideration

that certain regions were a certain color (i.e. that the sky

was blue and the grass was green) but rather processed an

input image in its entirety. Considering the image as a

whole resulted in a gray scale image as the distribution of

colors across the channels was uniform. Thus,

thresholding and interpolating the entire image resulted in

overlapping values which summed to gray color levels.

3. Segmenting Images for Coloring Using K-

Means Clustering, Edge Detection, and

Connectivity

 To tackle the problem of matching, we turned to image

segmentation. Using a true color image similar to the

image we wished to color, we converted the true color

image into the l*a*b* color space and segmented the

resulting image based on color using k-means clustering.

After segmentation, each region was turned into a binary

mask and used to extract regions of color from the original

true color image. With each region separated, a color map

was generated for each region and then manually applied

to corresponding regions of the grayscale image. Regions

of the grayscale image were generally divided into the

background and foreground, which were determined using

edge detection. Our method is shown in Fig. 7.

3.2 L*a*b* Color Space

 The CIELAB color space, also referred to as L*a*b*

represents a perceptually uniform color space, or one in

which changes in the value of a color are proportional to

the distance between the two colors in the color space

[11]. Based on the color-opponent theory, which states

that a color cannot be red and green or blue and yellow at

the same time as one opponent color suppresses the other,

the L*a*b* color space defines the lightness, L*, of a

color, the red-green chromaticity, a*, and the blue-yellow

chromaticity, b* [14].

 We used the L*a*b* color space for our segmentation

method due to the color space’s sensitivity to slight

changes in color. Our goal was to separate regions of

Figure 6: The result of generating a color map from a multicolored

image. When we used a multicolor image to generate a color map,

the produced color map was in grayscale. This occurred as our

algorithm had no way of differentiating between regions of

different colors and when all of the colors where considered

together, they produced a gray scale map.

Figure 7: Our algorithm for generating multiple color maps

based on different objects in a true color image. Using k-means

clustering, we divide the reference image into different regions

based on color and then convert each cluster to a binary mask.

This mask is eroded depending on the amount of error in the

cluster (i.e. if the cluster was assigned parts of the image that

were a different color than the desired color) and applied to the

original reference image to obtain accurate regions for each color

in the true color image. Color maps were then generated for each

region and applied to corresponding regions of the grayscale

image using segmentation and edge detection.

Figure 5: Using our method, we were able to successfully

generate an accurate color map (top right) based on the true color

image of a pink rose. The color map was effective in coloring a

grayscale rose.

either similar colors or the same color, making the L*a*b*

color space ideal for processing.

3.3 K-means Clustering

K-means clustering is a way of solving the clustering

problem, which consists figuring out how to group data

points from a given dataset in a meaningful way [15, 16].

In other words, the clustering problem asks how data

points can be grouped together so that data with similar

characteristics are placed in the same group, or cluster.

One answer to this problem is k-means clustering, a

method which assumes that the number of clusters, k, is

already known. In k-mean clustering, a set of data points

is randomly assigned to a cluster with a calculated

centroid. The algorithm calculates the sum of the squared

distance between the data points and the centroid until the

sum is minimized. By minimizing the sum of the squared

distance between the data points and the centroid, k-means

clustering ensures that the resulting clusters consist of

points with similar characteristics. The general algorithm

for k-means clustering is presented in Fig. 9.

We chose k-means clustering as the way to segment our

image as we wanted to segment our image based on color.

Clustering allowed us to group together all of the pixels of

similar or the same color and thus proved effective for

segmentation.

After segmenting our true color images, we created

binary masks for each region and applied them to the

original image to extract the true color region. Then, color

maps were created for each region using the method

described in Section 2.1. The results of our method are

given in the next section.

Figure 10: We successfully generated accurate color maps for the purple

rose and leaves shown in the true color image. Then, through edge

detection, we detected the rose in the grayscale image shown and applied

the foreground color map. The leaves color map was applied to the

background. Although the background color is not vibrant or entirely

visible, a difference in the background between the grayscale image and

the pseudocolored image can be seen.

Figure 8 [13]: The l*a*b* color space represents the lightness (l),

amount of red or green (a*), and amount of yellow or blue (b*) in a

color. This color space is sensitive to slight changes in color, making it

an ideal color space for clustering.

K data points are
randomly selected and
assigned to the clusters

The cluster centroids
are calculated by

averaging the data
points.

The sum of the squared
distances between the

centroid and data
points is calculated.

The last step is repeated
until the centroid no

longer changes or until
the maximum number of

interations has been
reached.

The sum of the squared
distances is

recalculated and the
centroid is moved

again.

The centroid is moved
in a way that decreases
the sum of the squared

distance.

Figure 9: The algorithm for k-means clustering. This method

assumes that the number of clusters, k, is already known and

iteratively calculates the clusters by minimizing the sum of the

squared distance between all of the data points in the cluster and

the centroid [17].

3.4 Results

Using a purple rose with a leafy green background as

our true color input image, we colored a grayscale picture

of a rose as shown in Fig. 10 by segmenting the true color

image into a foreground (the purple rose) and a

background (the leafs).

Although we were able to successfully generate color

maps from the true color image, applying the leaf color

map to the background of the grayscale image did not

produce the level of color we had been hoping for. To

determine how to produce a vibrantly colored background,

we experimented with various parameters in our

algorithm. We found that the amount of erosion applied to

our binary masks greatly impacted the final pseudocolored

imaged. Fig. 11 shows pseudocolored images with the

structuring element for erosion set to 1, 5, and 10

respectively.

The image in the middle has a much more vibrant

background than either image on its side, indicating that

the erosion of the binary mask – which we perform to

clean up any residual part of the image that does not fit in

with the rest of the cluster – greatly impacts the quality of

the final pseudocolored image. We also found that the

level of erosion required to achieve the desired effect

varied from image to image and that there was no optimal

value across various images.

We used our segmentation algorithm to generate color

maps for the true color image shown in Fig. 6. We created

three separate color maps: one for the sky, one for the

grass, and one for the tree as shown in Fig. 12. After

applying the respective color maps to each region, we

produced the final pseudocolored image shown. As can be

seen from Fig. 12, the final pseudocolored image has lost

many details of the tree in the original grayscale image.

Furthermore, our edge detection algorithm did not

accurately detect the tree and was not able to separate the

grass from the tree.

To try to improve the quality of the pseudocolored

image, we attempted to segment the tree and grass instead

of using edge detection to find the regions to color. As

shown in Fig. 13, our segmentation algorithm did not

perform significantly better than our edge detection

method in terms of detecting the tree. We were, however,

able to successfully separate the grass from the tree and

color the two separately.

Figure 11: Pseudocolored images generated from the same reference image but with varying erosion strengths for the background. The

erosion was set to 1, 5, and 10, respectively.

Figure 12: color maps generated from the true color image in Fig. 6.

Although we were able to successfully generate accurate color maps

for the different regions of the reference image, our edge detection

algorithm did not accurately detect the tree in the grayscale image.

Furthermore, the edge detection algorithm did not differentiate

between the grass and the tree.

We experimented with the erosion of our binary maps

in an attempt to produce a more vibrant sky color. Fig. 14

shows our results and compares an erosion of 1, 2, and 5.

In general, lowering the structuring element strength for

erosion made the image lighter and increasing the strength

made the image darker. We propose that, based on the

desired output, the erosion of each binary image for each

region (i.e. the tree, the grass, the sky) be treated

separately and optimized individually to produce the most

contrasted and clear pseudocolored image.

4. Improving Segmentation Results

 To improve on the results of the previous section, we

implemented a region growing algorithm and a k-means

segmentation based on a feature set [18]. Our region

growing algorithm was not successful in effectively

segmenting the image into different regions (i.e. the

foreground, background, object 1, object 2, etc.) but using

a feature vector which defined the intensity information,

neighborhood texture information, and spatial information

about each pixel resulted in a more effective clustering

that was able to successfully segment the tree shown in

Fig. 12.

4.1 Region Growing Algorithm and Results

 Our region growing algorithm asks the user to pick one

point on the image as the initial seed point. Based on the

seed point, the algorithm uses a 3 x 3 kernel to calculate

the neighborhood of the seed and calculates both the

weighted average and variance of the neighborhood. The

variance is then used as the threshold with which the

region growing algorithm compares other pixels to the

seed pixel. Our result is given as follows

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐼𝑚𝑎𝑔𝑒

= {
𝐼(𝑥, 𝑦), 𝑆𝑆 < 𝑇 ∧ 𝐼(𝑥, 𝑦) 𝑖𝑠 8 − 𝑐𝑜𝑛𝑛 𝑤𝑖𝑡ℎ 𝐼(𝑚, 𝑛)

0, 𝑆𝑆 > 𝑇

(4)

Where I(x,y) is the value of the input image at (x,y), I(m,n)

is the seed point, SS is the threshold calculated at (x,y) and

T is the threshold calculated at the seed. Note that the

segmented image is only set equal to the original pixel if

the sum of squares at that point is less than the threshold

Figure 14: Pseudocolored images with mask erosion strengths of 1, 2, and 5, respectively. As the erosion increased, the intensity of

the pseudocolored image decreased. We concluded that the choice of erosion is subjective ad that for each region, the erosion should

be treated differently

Figure 13: In an attempt to improve our pseudocoloring algorithm we

added labels based on 8 connectivity to our edge detection

segmentation. On the left, we have the original pseudocolored image

using edge detection. On the right is the image pseudocolored using

segmentation to detect various regions. Although we were able to

successfully separate the grass and tree using segmentation, our

algorithm still failed to accurately detect the tree.

Figure 15: In an attempt to improve our segmentation of the grayscale

images we wanted to pseudo-color, we implemented a region growth

algorithm based on the variance of a 3 x 3 pixel neighborhood.

However, our algorithm was unsuccessful in accurately detecting

objects based on an initial seed pixel.

and if the point is 8 connected to the seed point. If a pixel

is 8-connected and its threshold value is equal to or below

the seed threshold, the pixel is appended to the seeded

pixel. If the threshold value is greater, its corresponding

position in the segmented image is set to zero. We define

SS as

𝑆𝑆 = ∑(𝐼(𝑥𝑖 , 𝑦𝑖) − 𝑎𝑣𝑔)2

9

1

(5)

Where avg is the weighted average of the pixel

neighborhood given as

1

16
∗ 𝛴

I(x-1,y-1)

2*I(x,y-1)

I(x+1,y-1)

2*I(x-1,y)

4*I(x,y)

2*I(x+1,y)

I(x-1,y+1)

2*I(x,y+1)

I(x+1,y+1)

(6)

T is SS calculated at the seed pixel. As shown in Fig. 15,

our method did not successfully segment the objects from

the input images.

4.2 K-Means Segmentation Using a Feature

Vector

The k-means clustering algorithm we discussed in

section 3 can be improved upon by using texture and

spatial information to calculate the clusters. In section 3,

the clusters were calculated based on color information.

However, the resulting clusters (see supplemental

material) were not entirely accurate and had to be filtered

to obtain the desired regions. By including texture and

spatial information about the pixels, the k-means

algorithm has additional information which it can use to

narrow down the results of the cluster and increase

accuracy. For instance, a portion of the tree in the

grayscale image in Fig. 12 has similar intensity/color

values as the sky, resulting in an inaccurate segmentation.

In contrast, the two objects have different textures.

Therefore, by including texture information in our k-

means segmentation, we can more accurately segment our

image as shown in Fig. 16.

 The texture information was obtained using a Gabor

filter, which is an orientation-sensitive bandpass filter [19,

20]. Essentially, a Gabor filter is a sinusoidal signal of

some frequency f and a particular orientation modulated

by a Gaussian wave and is given as

𝑔𝑚𝑛(𝑥) =
1

2𝜋𝑎𝑛𝑏𝑛

𝑒−
1
2

𝑥𝑇𝐴𝑚𝑛𝑥𝑒𝑗𝑘0𝑚𝑛
𝑇 𝑥

(7)

where Amn determines the orientation and frequency range,

or bandwidth, of the filter and k0 is the modulation

frequency vector [21]. Once the texture information is

obtained through the application of Gabor filters, the pixel

positions of each pixel in the image are extracted. Finally,

the intensity, texture, and spatial information are all put

into one array which we will call the feature vector. This

feature vector was then used as the input for the k-means

clustering algorithm.

 Although using a feature vector led to a more accurate

segmentation compared the edge detection and labelling

methods described in Section 3, the tree and grass were

segmented as one object. To separate the two, we

manually selected four pixels from the grass region to

form a rectangular mask. Applying this mask to the tree

cluster allowed us to separate the grass and tree. Our final

pseudocolored image is presented in Fig. 18.

Figure 16: Using texture, spatial, and intensity information we

were able to use k-means clustering to more accurately detect

objects in the grayscale images we wished to color. Despite the

improved accuracy, the segmentation is not exact as the segmented

tree image contains some regions of the sky.
Figure 17: Separated grass and tree objects. Our k-means

clustering algorithm segmented the tree and grass as one object

whereas our goal was to segment the two separately. To extract the

grass region from the tree + grass cluster, we manually selected

pixels from the grass region to form a rectangular mask. This mask

was then applied to the cluster to extract the grass.

Conclusion

 We developed an algorithm to create color maps for

different objects in a true color image. We then used the

color maps to pseudocolor similar objects in grayscale

images. We chose to forgo histogram equalization as our

initial analysis of the impact of histogram equalization on

pseudocoloring showed that the results were subjective

and varied from image to image.

Our method achieved mixed results. For solid objects

without any holes or gaps, such as a rose, our method was

very effective in both generating color maps and applying

them to the target image. On the other hand, for objects

with less connectivity/starker changes in intensity in the

grayscale image, our algorithm failed to accurately detect

the target object. We then proposed a modified version of

our method and used k-means segmentation with texture,

spatial, and intensity information to segment the image we

wished to color. Although this method was a great

improvement on our original method and the segmentation

accuracy significantly improved, there was still reasonable

error in our segmentation. We propose that an algorithm

that uses matching or learning to detect and label objects

in an image would be more effective and accurate at

detecting the target object and applying the color map.

For future research we wish to incorporate a matching

algorithm in place of using either edge detection or

segmentation. By doing so, we can automate the

pseudocoloring process and decrease user involvement.

Currently, we must manually change the threshold level,

the structuring element value, the number of clusters, and

must manually segment the grass in section 4 after the

initial k-means segmentation. Producing an algorithm

which can guess, test, and optimize such parameters on its

own would lead to a much more efficient process.

References

[1] S. E. .Umbaugh. Digital Image Processing and Analysis. 2nd

ed. CRC Press. 2010.

[2] J. Orwig. Iconic Hubble images are actually black-and-white.

Insider. 2015.

[3] Selvapriya B., Raghu B. “A color map for pseudo color

image processing of medical images,” International Journal

of Engineering and Technology 7(3.34), pp 954-958, 2018.

[4] M. Grundland. N. A. Dodgson. Color histogram specification

by Histogram Warping. Society of Photo-Optical

Instrumentation Engineers, 5667 (2005).

[5] K. A. Navas, P. R. Naveen, G. Thottan, R. Jayadevan and S.

Assim, "A novel frequency domain approach to automated

pseudo-colouring of images," 2011 IEEE Recent Advances

in Intelligent Computational Systems, 2011, pp. 533-536,

doi: 10.1109/RAICS.2011.6069369.

[6] J. Afruz, V. Wilson, S. E. Umbaugh. “Frequency domain

pseudo-color to enhance ultrasound images,” 2010 CCSE

Computer and Information Science 3(4).

[7] R. Jayadevan, K. A. Navas, A. Ananthan, K. N. Latha. “A

review on recent pseudo-coloring techniques,” IJSTE 1(11),

pp 334 – 348, 2015.

[8] Image Processing Toolbox User’s Guide. Mathworks.

[9] F. Karstens. What is the RGB color space? Baslerweb.com.

[10] T. Helland. Seven grayscale converstion algorithms.

Tannerhelland.com. 2011.

[11] R. C. Gonzalez, R. E. Woods. “Digital Image Processing,”

3rd ed. pp 407 - 414, 2008.

[12] M. Grundland, N. A. Dodgson. The decolorize algorithm for

contrast enhancing, color to grayscale conversion. 2005.

[13] T. Mouw. LAB Color Values. X-Rite. 2018.

[14] Identifying Color Differences Using L*a*b* or L*C*H*

Coordinates. Konica Minolta.

[15] A. Likas. N. Vlassis. J. J. Verbeek. The global k-means

clustering algorithm. [Technical Report] IAS-UVA-01-02,

2001, pp.12. ffinria-00321515f.

[16] D. T. Pham. S. S. Dimov. C. D. Nguyen. Selection of K in K-

means clustering. J. Mechanical Engineering Science,

219:103-119, 2004.

[17] ML – Clustering K-Means Algorithm. Tutorialspoint.

[18] imsegkmeans. Mathworks Documntation. (2021)

[19] Aach, T.; Kaup, A.; Mester, R.: ,On texture analysis: Local

energy transforms versus quadrature filters." In Signal Processing,

vol. 45, pp. 173-181, 1995

[20] P. Joshi. “Understanding Gabor Filters”. Perpetual Engima

(2014).

[21] Gabor Filters, The Computer Vision Lab at GET, University

of Paderborn (1998).

Figure 18: Our final pseudocolored image

